Oil/air coolers type OAC Cooling systems

High-performance cooling of applications with hydraulic and lubricating oils

A compact and high-performance cooler series comprising twelve sizes was developed for high-performance cooling of hydraulic and lubricating oils.

Applications

- Construction machines
- Agricultural machines
- Rail technology
- Machine tools

- Hydraulic power packs
- Wind power
- Hydraulic presses
- Iron and steel industry etc.

Applicable for cooling of:

- Hydraulic oil
- Gear oil
- Lubricating grease
- Water-glycol (min. 40 % glycol)

Structure

- Cooler core (plate and bar) made of aluminium with industrial lamina in black (RAL 9005)
- Fan cover made of steel in black (RAL 9005)
- Fan made of nylon PAG
- Protective grid made of steel in black (RAL 9005)
- Fan 12 V/24 V IP68, 230V/400V, 400V/690V, IP55
- Fan with hydraulic drive

Marine design:

- Refrigerating grid coated via KTL immersion process
- Frame, fan cover, protection grid coated by KTL
- Electric motor with special painting and protection IP56

ATEX design:

- Electric motor in ATEX design ⟨ II 2 G Exell T3
- Special fan

Accessories, protective grid, TSC

- Thermal bypass valves, oil temperature valves OTV, see page 26/27

The OAC coolers should be protected from direct solar radiation.

Selection system

To select the suitable cooler you need to know the following details:

Q [kW] Heat to be dissipated

V [l/min] Oil flow

T_{oil} [°C] Inlet temperature of oil into cooler

T_L [°C] Inlet temperature of ambient air into cooler

0,0

25

50

75

100

125

15 () V_{oil} [l/min]

Calculation of specific cooling capacity

Inlet temperature difference ETD [$^{\circ}$ C] = TOil - TL

Specific cooling capacity required $P_{requ.} = Q/ETD$

The specific cooling capacity required must fall below the performance curve! → 12 kW/(65°C - 30°C)= 0.34 kW/°C

The following was selected: OAC 400

The actual cooling effect of the cooler is 0.39 kW/°C x 35°C = 13.65 kW

Calculation of pressure loss

The pressure loss in the curves of the different data sheets is based on a viscosity of 30 cSt

The effective pressure loss is calculated as follows:

Pressure loss (from curve) x factor = effective pressure loss

Oil/air coolers type OAC Cooling systems

Type code of industrial coolers oil/air

