# KTR-STOP® M-xxx-F Passive floating caliper brake

### Hydraulic brake system





| KTR-STOP® M-xxx-F                           |                            |                                                |                      |  |  |  |
|---------------------------------------------|----------------------------|------------------------------------------------|----------------------|--|--|--|
| Total weight                                | approx. 200 kg - 212 kg 1) | Max. operating pressure                        | 200 bar              |  |  |  |
| Width of brake pad                          | 200 mm                     | Thickness of brake disk                        | 25 mm - 50 mm        |  |  |  |
| Surface of each brake pad organic           | 57.900 mm <sup>2</sup>     | Pressure port                                  | G 1/4                |  |  |  |
| Sinter                                      | 53.500 mm <sup>2</sup>     | Oil bleed                                      | G 1/8                |  |  |  |
| Max. wear of each brake pad                 | 8 mm                       | Backlash on axles - towards mounting surface   | 5 mm                 |  |  |  |
| Nominal coefficient of friction 2)          | $\mu = 0.4$                | Backlash on axles - away from mounting surface | below 120 kN = 10 mm |  |  |  |
| Total brake piston surface - complete brake | 137,4 cm <sup>2</sup>      |                                                | above 120 kN = 5 mm  |  |  |  |
| Volume with 1 mm stroke - complete brake    | 13,74 cm <sup>3</sup>      | Min. diameter of brake disk ØDA                | 800 mm               |  |  |  |
|                                             |                            | Operation temperature                          | -20 °C to +50 °C     |  |  |  |

| Types of brakes             |                              |                         |           |                                            |       |       |        |
|-----------------------------|------------------------------|-------------------------|-----------|--------------------------------------------|-------|-------|--------|
| Type of brake <sup>3)</sup> | Clamping force Power loss 4) | Opening pressure        | Weight 1) | Braking torque [Nm] with brake disk Ø [mm] |       |       |        |
|                             | F <sub>C</sub> [kN]          | F <sub>C</sub> [kN] [%] | [bar]     | [kg]                                       | 800   | 1500  | 2000   |
| KTR-STOP® M-100-F           | 100                          | 7,0                     | 110       | 200                                        | 24000 | 52000 | 72000  |
| KTR-STOP® M-120-F           | 120                          | 8,5                     | 130       | 200                                        | 28800 | 62400 | 86400  |
| KTR-STOP® M-140-F           | 140                          | 4,5                     | 150       | 212                                        | 33600 | 72800 | 100800 |
| KTR-STOP® M-160-F           | 160                          | 7,0                     | 180       | 212                                        | 38400 | 83200 | 115200 |
| KTR-STOP® M-180-F           | 180                          | 6,0                     | 190       | 212                                        | 43200 | 93600 | 129600 |

<sup>&</sup>lt;sup>2)</sup> The coefficient of friction each depends on the application or material of the brake pad, respectively. Please consult with KTR.
<sup>3)</sup> Other types of brakes on request
<sup>4)</sup> With 1 mm stroke (0.5 mm wear of pad on each side)

| Ordering |  |
|----------|--|
| example: |  |

| KTR-STOP® | M ·           | - 100 -        | F       | Α -    | - 40                    |
|-----------|---------------|----------------|---------|--------|-------------------------|
| KTR brake | Size of brake | Clamping force | Floater | Option | Thickness of brake disk |



#### Calculation of brake disk

$$D_{av} = D_A - 200$$

#### Connection dimensions of brake



$$F_b = F_c \cdot 2 \cdot \mu$$

= Braking force [kN]

= Clamping force [kN]

= Braking torque [kNm]

= Number of brakes

= Effective diameter of brake [m]



$$F_b = F_c \cdot 2 \cdot \mu$$

## **Optional**

- Various colours available
- Sensor indicating wear of pad and condition
- Temperature sensor
- Alternative materials of brake pad

