KTR-STOP ${ }^{\circledR}$ S-xx-F
Passive floating caliper brake

Hydraulic brake system

${ }^{1)}$ Dimensions and weight depend on thickness of brake disk.

KTR-STOP ${ }^{\circledR}$ S-xx-F			
Total weight	approx. $90 \mathrm{~kg}-100 \mathrm{~kg}^{1)}$	Max. operating pressure	200 bar
Width of brake pad	125 mm	Thickness of brake disk	$20 \mathrm{~mm}-40 \mathrm{~mm}$
Surface of each brake pad organic	$28.700 \mathrm{~mm}^{2}$	Pressure port	G 1/4
powder metal	$26.800 \mathrm{~mm}^{2}$	Oil bleed	G 1/8
Max. wear of each brake pad	6 mm	Backlash on axles - towards mounting surface	5 mm
Nominal coefficient of friction ${ }^{2)}$	$\mu=0,4$	Backlash on axles - away from mounting surface	10 mm
Total brake piston surface - complete brake	$69 \mathrm{~cm}^{2}$	Min. diameter of brake disk $\varnothing \mathrm{D}_{\mathrm{A}}$	500 mm
Volume with 1 mm stroke - complete brake	6,9 cm^{3}	Operation temperature	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Types of brakes							
Type of brake ${ }^{3)}$	Clamping force $\mathrm{F}_{\mathrm{C}}[\mathrm{kN}]$	$\begin{gathered} \text { Power loss }{ }^{4)} \\ {[\%]} \end{gathered}$	Opening pressure [bar]	Weight ${ }^{1)}$ [kg]	Braking torque [Nm] with brake disk \varnothing [mm]		
					500	710	1000
KTR-STOP ${ }^{\circledR}$ S-20-F	20	4,5	40	90	2900	4600	6900
KTR-STOP ${ }^{\text {® }}$ S-40-F	40	6,5	90	90	5900	9200	13900
KTR-STOP ${ }^{\text {® }}$ S-60-F	60	7,0	130	100	8800	13900	20800
KTR-STOP ${ }^{\text {® }}$ S-80-F	80	5,0	170	100	11800	18500	27800

${ }^{2)}$ The coefficient of friction each depends on the application or material of the brake, respectively. Please consult with KTR.
${ }^{3}$) Other types of brakes on request
${ }^{4}$) With 1 mm stroke (0.5 mm wear of pad on each side)

Calculation of brake disk

up to $\varnothing \mathrm{D}_{\mathrm{A}}=1000 \mathrm{~mm}$

$\mathrm{D}_{\mathrm{C} \text { max. }}=\mathrm{D}_{\mathrm{A}}-305$

$$
D_{a v}=D_{A}-130
$$

from $\varnothing D_{A}=1000 \mathrm{~mm}$ to $\varnothing \mathrm{D}_{\mathrm{A}}=1800 \mathrm{~mm}$
$\left|\mathrm{D}_{\mathrm{C} \text { max. }}=\mathrm{D}_{\mathrm{A}}-295\right|$
$D_{a v}=D_{A}-120$
from $\varnothing D_{A}=1800 \mathrm{~mm}$
D_{C} max. $=D_{A}-285$
$D_{a v}=D_{A}-110$

Connection dimensions of brake

$$
\begin{array}{l|l}
\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{c}} \cdot 2 \cdot \mu & \mathrm{~F}_{\mathrm{b}}=\text { Braking force }[\mathrm{kN}] \\
\mathrm{F}_{\mathrm{c}} & =\text { Clamping force }[\mathrm{kN}] \\
\mathrm{M}_{\mathrm{b}}=\mathrm{z} \cdot \mathrm{~F}_{\mathrm{b}} \cdot \frac{\mathrm{D}_{\mathrm{av}}}{2} & \mathrm{M}_{\mathrm{b}} \\
& =\text { Braking torque }[\mathrm{kNm}] \\
\mathrm{z} & =\text { Number of brakes } \\
& \mathrm{D}_{\mathrm{av}} \\
=\text { Effective diameter of brake }[\mathrm{m}]
\end{array}
$$

Optional

- Various colours available
- Sensor indicating wear of pad and condition
- Temperature sensor
- Alternative materials of brake pad

