KTR-STOP® S-xx-F Passive floating caliper brake

Hydraulic brake system

1) Dimensions and weight depend on thickness of brake disk.

KTR-STOP® S-xx-F							
Total weight	approx. 90 kg - 100 kg ¹⁾	Max. operating pressure	200 bar				
Width of brake pad	125 mm	Thickness of brake disk	20 mm - 40 mm				
Surface of each brake pad organic	28.700 mm ²	Pressure port	G 1/4				
powder metal	26.800 mm ²	Oil bleed	G 1/8				
Max. wear of each brake pad	6 mm	Backlash on axles - towards mounting surface	5 mm				
Nominal coefficient of friction 2)	$\mu = 0.4$	Backlash on axles - away from mounting surface	10 mm				
Total brake piston surface - complete brake	69 cm ²	Min. diameter of brake disk ØDA	500 mm				
Volume with 1 mm stroke - complete brake	6,9 cm ³	Operation temperature	-20 °C to +50 °C				

Types of brakes								
	Clamping force Power loss ⁴	Power loss 4)	Opening pressure [bar]	Weight 1) [kg]	Braking torque [Nm] with brake disk Ø [mm]			
	F _C [kN]	F _C [kN] [%]			500	710	1000	
KTR-STOP® S-20-F	20	4,5	40	90	2900	4600	6900	
KTR-STOP® S-40-F	40	6,5	90	90	5900	9200	13900	
KTR-STOP® S-60-F	60	7,0	130	100	8800	13900	20800	
KTR-STOP® S-80-F	80	5,0	170	100	11800	18500	27800	

²⁾ The coefficient of friction each depends on the application or material of the brake, respectively. Please consult with KTR.

Ordering
example:

KTR-STOP®	S	- 40 -	F	Α .	- 30
KTR brake	Size of brake	Clamping force	Floater	Option	Thickness of brake disk

³⁾ Other types of brakes on request 4) With 1 mm stroke (0.5 mm wear of pad on each side)

Calculation of brake disk

up to $\emptyset D_A = 1000 \text{ mm}$

$$D_{av} = D_A - 130$$

from $\varnothing D_A$ = 1000 mm to $\varnothing D_A$ = 1800 mm

$$D_{av} = D_A - 120$$

from $\emptyset D_A = 1800 \text{ mm}$

$$D_{C \text{ max.}} = D_{A} - 285$$

$$D_{av} = D_A - 110$$

Connection dimensions of brake

5

 F_b = Braking force [kN]

 F_C = Clamping force [kN]

 M_b = Braking torque [kNm]

z = Number of brakes

 D_{av} = Effective diameter of brake [m]

Optional

- Various colours available
- Sensor indicating wear of pad and condition
- Temperature sensor
- Alternative materials of brake pad