Hydraulic brake system

${ }^{1)}$ Dimensions and weight depend on thickness of brake disk.

KTR-STOP ${ }^{\circledR}$ XS-xx-F			
Total weight	approx. $20,5 \mathrm{~kg}$	Max. operating pressure	200 bar
Width of brake pad	70 mm	Thickness of brake disk	$10 \mathrm{~mm}-30 \mathrm{~mm}$
Surface of each brake pad organic	$8.000 \mathrm{~mm}^{2}$	Pressure port	G 1/8
powder metal	$5.800 \mathrm{~mm}^{2}$	Oil bleed	G 1/8
Max. wear of each brake pad	5 mm	Backlash on axles - towards mounting surface	5 mm
Nominal coefficient of friction ${ }^{2)}$	$\mu=0,4$	Backlash on axles - away from mounting surface	5 mm
Total brake piston surface - complete brake	$11 \mathrm{~cm}^{2}$	Min. diameter of brake disk ØDA	300 mm
Volume with 1 mm stroke - complete brake	$1,1 \mathrm{~cm}^{3}$	Operating temperature	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Types of brakes							
Type of brake ${ }^{\text {3) }}$	Clamping force $\mathrm{F}_{\mathrm{C}}[\mathrm{kN}]$	Power loss ${ }^{4)}$ [\%]	Opening pressure [bar]	Weight ${ }^{1)}$ [kg]	Braking torque [Nm] with brake disk \varnothing [mm]		
					315	560	800
KTR-STOP XS-3-F	3	5,5	40	20,5	270	560	850
KTR-STOP XS-6-F	6	6,5	80	20,5	540	1130	1710
KTR-STOP XS-9-F	9	12	130	20,5	820	1700	2570
KTR-STOP XS-12-F	12	11	160	20,5	1090	2270	3420
KTR-STOP XS-15-F	15	8	190	20,5	1370	2840	4280

${ }^{2)}$ The coefficient of friction each depends on the application or material of the brake pad, respectively. Please consult with KTR.
${ }^{3)}$ Other types of brakes on request
${ }^{4}$) With 1 mm stroke (0.5 mm wear of pad on each side)

Calculation of brake disk

```
DCmax = DA - 195
    Dav}=\mp@subsup{D}{A}{}-8
```

Connection dimensions of brake

$$
\begin{array}{l|l}
\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{c}} \cdot 2 \cdot \mu & \mathrm{~F}_{\mathrm{b}}=\text { Braking force }[\mathrm{kN}] \\
\mathrm{F}_{\mathrm{c}}=\text { Clamping force }[\mathrm{kN}] \\
\mathrm{M}_{\mathrm{b}}=\mathrm{z} \cdot \mathrm{~F}_{\mathrm{b}} \cdot \frac{\mathrm{D}_{\mathrm{av}}}{2} & \mathrm{M}_{\mathrm{b}}=\text { Braking torque }[\mathrm{kNm}] \\
\mathrm{z} & =\text { Number of brakes } \\
\mathrm{D}_{\mathrm{av}} & =\text { Effective diameter of brake }[\mathrm{m}]
\end{array}
$$

Optional

Various colours available

- Sensor indicating wear of pad and condition
- Temperature sensor

Alternative materials of brake pad

